
P?QCU.S.S.R.,Vo1.49,:Jo.L',pp. 200-207,1985 
Printed in Great Britain 

0021-8928/85 $lo.o@+o.~ 

Pergamon Journals Ltd. 

GENERALIZED PERIODIC PROBLEM OF ELASTICITY THEORY FOR A CRACKED HALF-PLANE+ 

M.L. BURYSHKIN and M.V. HADIOLLO 

The state of stress of an isotropic half-plane weakened by a regular 
system of rectilinear cracks perpendicular to its edge is studied. The 
formulation of the problem is different from that used in /l/ in that the 
load on the crack does not generally possess any periodic properties. 
This circumstance makes utilization of the approaches proposed in /l/ for 
the solution impossible in practice. 

As is well-known, the problem reduces to infinite systems of singular 
integral equations in unknown jumps which the derivatives ofthedisplacements 
undergo during the passage through each crack. To simplify the system 
obtained, a scheme of analytic accounting of the symmetry of the elastic 
geometric characteristics of the medium is used /2/, according to which 
the generalized periodic problems are studied first. As is shown in the 
paper, a system of four singular integral equations in the desired jumps 
on the fundamental crack corresponds to them. These jumps are determined 
by the method of orthogonal polynomials, and by using elementary algebraic 
relationships on the other cracks. 

1. Formulation of the problem. The cracked half-plane under consideration (Fig.:) 
possesses a symmetry group C,h' in which translations (shifts) 7‘, on the vectors ma (a is 
the basis vector-j and reflections O,, in the planes n,,, (m = 0, *I, 12,. .) occur. A segment 
occupied by the main crack is understood to be r or I?% O). In its turn, the crack obtained 

from a fundamental translation T, or reflection 

@,,, occupies the segment r(0-m) = T,r or 

n, n: R2 r 
/ A I’.’ , f’;.” 

j Y: 
z 

riz,m) = 8,r (m .= 0, *I, 12,. .j. 
The geometry of the medium is determined by 

the length a of the main translation vector, the 
distance e from the main crack tc the y axis 

, I (the n, plane), and the ordinate y1 of the 
1 / 

upper end of the crack. Without loss of 
generality, the crack length is taken to be 

a * eqi;ai to two. The segment l-'(j,Il;j is removed a 
distance e'j.m) from the y axis, where e('.rn, = 

F1g.l (--ljie + mo (i = 0, 1). 
The following conditions hold on theboundary 

of the medium 

% = 0. uzy = (I (12 / < 03. y = 0) (1.1) 

u I= - p. n.,,1i (y) (Z = e’;. “i, y, .< y < y, - 2, j = 0. 1) (1.‘: 

cl,& = -- pc:. m)(2) (y) 

where u,, cy, and % are the normal and shear stresses, and p(jt m'(l' (y) and pcj, m)(*) (g) are given 
normal and tangential force functions acting on the crack boundary r0.m’ (j = 0,l; m = 0, il. 5 
2. .). We emphasize that according tc (1.2) the forces applied to the different edges of 
one crack are identical, i.e., the jumps in the stresses 0, and CI,,, are zero during passage 
through any crack. Such a constraint is not related to the possibilities of the proposed 
method of solution and is introduced exclusively from considerations of compactness of the 
subsequent calculations. 

The biharmonic problem of elasticity theory with boundary conditions (1.1) and (1.2) 
reduces to an infinite system of singular integral equations (the asterisk denotes the absence 
of a component corresponding to the value n=m= 0 in the sum) 

(_ *)1+1”‘{ xu, r)(s) (E) [& + s ty, s)‘, d5 i (1.3) 
YI 
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Here 
4p 

s(Yz)=*+*- - (1/ + t13 
Rli,zyJ,, (Y, f) = fi$\ (& rfi) _ &. '1, Y. j) 

RI:; (2, Y, 5) = - (Y - 5) l(y - E)" + 32’1 A!? + 2 (y + 
E,,?-- (Y + 3;) [(Y-T E)2-~Pl&2'~4~~ (Y + L)[(Y + 

;)2 - 39) At3) 

R$ (s, Y, i) = ;Y - i) I(Y - Q* - z21 A(_') - 

(y- 5) I(y + 6)r - -‘I A1” - 4~5 (y + F) I(y $ ET - 
3t*l AI" 

R&, (z, y, E),= t {(-i)j i(z* -. (y - 5)') AI" - A1" +- 

2 (y - E 7 (--1)‘Q) (y T f) A:)1 + 4yE 1z* - 3 (y + 
E)V A”‘} 

(j = 1, 2’; 62’ = I9 +- (y * &)z1-i*). 

We note that this system can also be constructed by the method of generalized integral 
transforms /3/. 

The functions 

@, m)(s)(Y)= _.& [$(&. m) + 0,Y) - -Z$(r(j, w - 0, y)] (1.4) 

(s== 1,2 y1 < y < Yl + 2) 

are the unknowns in the system (1.31, i.e., the jumps which the derivatives of thedisplacement 

UI undergo in passing through the segments I'(;,m) (j = 0. i; nz = 0, &I, 12, . .) ( uI and ~2 
are understood to be the displacements along the r and y axes, respectively). 

We note that the jumps mentioned should in addition satisfy the conditions that the 
crack be closed, which can be written in the form 

Y,-? 
,S %(j.~)~~)(y)dy=O (.2=1,2;j=O,l; r=O,+I,~L?,..,). 

Direct solution of system (1.3) is fraught with serious difficulties, 
to simplify it because of the symmetry of the elastic geometric properties 
using the well-known scheme in /2/. According tc this, the problems under 
always be reduced, in practice, to generalized periodic problems. 

(1.5) 

hence it is best 
of the medium by 
consideration can 

2. Generalized periodic problems, We shall consider the load to be described by 

any of two functions pap (p = I,?) for which the forces p$,m"r'(Y) act on the crack edges and 
satisfy the conditions 

PS m”b’ (Y) = 2 Ts,,q (T,) p&00”“’ (y) 
“=l 

(2.1) 

p:,,m""(y)=(- I)..-2 E Taprl(O,)phO;P)'")(y) 
?=I 

(s = 1, 2: n2 = 0. =I, &:2. . .: YI .< Y G Y1 - 2) 

where 7OPl (Twl) and T=~,, (@,,J are elements on the intersection of the p-th row and n-th column 
of the matrix of two-dimensional representations (a is a scalar parameter, )a / <x) 

T=(T,)Z / 
cosmz sinmz I 

ii I 

cos mz - sin m?3L 

1, -sin ma cos ma ’ Ta(em)= - sin met I -cosma 

According to /2/, the components of the state of stress and strain that correspond to the 
loads mentioned, and therefore the unknown jumps ~$mm,(r) (y), possess properties similar to 
(2.1). In particular 

2 
x$ m)(‘)(y)= 2 7aP?l(~,)x%0)(")(Y) 

ll=, (2.4 
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Such problems are called generalized periodic problems. Their specific feature is that 
by virtue of (2.2) it is sufficient to find only the four jumps @')('(y)(s = 1,2;p = i,2). 
To do this just those integral equations from (1.3) can be used that correspond to the main 
crack, by writing them for each of the loads pw. After taking account of Eqs. (2.2) the 
equations mentioned take the form 

where the asterisk denotes the absence of a component corresponding to the value m=O in 
the summation. 

The remaining equations from (1,3) are satisfied automatically /2/. 
The integral equations (2.3) of the generalized periodic problem are solved by the method 

of orthogonal polynomials /3/. 
We will seek the desired functions x$,""' (E) in the form of the series 

(7.4) 

where -1 :< t = q (E) < 1. q (E) = 5 - Y, - 1. T,(t)are Chebyshev polynomials of the first kind, and 
XpI(l) are scalar coefficients. 

It immediately follows from conditions (1.5) that Xpo@) = 0. Consequently, the summation 
in (2.4) can start from the value T= 1. 

Substituting the expansion (2.4) intc (2.31, we multiply both sides of the latter by 
(1 - g2)'/* Cl_, (g). where 1 = 1. 2. I . ., g = r~ (Y), I',+ (gj are Chebyshev polynomials of the second 
kind, and we integrate with respect to y between Y, and Y, f 2. 

We make a change of variables by setting y = q-'(g) and t = q-l (t), where q-1 (2) = 2 - 

Yl - 1, and we take into account that 

<(Y - Q-') = --2-?I%,, 

where blr is the Kronecker delta. We consequently arrive at an infinite algebraic system 
of equations in the desired coefficients 

q$, 2, p, X$'.4;',;$- l‘li' (0 = I, :!, s= 1, 2; I = 1: 3) (2.5) 

.$;:t = (- I)+lb&;& (4 - <.5)) f (R,,> 

B,,(y::) = i* Tcr;q(T,) H$;%;I;,(y,:) -. 
7Rs-x 

(- 1)'-1,-, rop,,(ffm) RI:: $:;i, (y.S) 

Y$‘=(- 1)*4X \ I.'1 - g?I:,_,(g)p~~0’(“1~C-‘(g)ldg 
-1 

It is best to use known quadrature formulas in evaluating the integrals /4/. 
The approximate solution of system (2.5) is constructed by using the method of reduction. 

Numerical analysis shows that conservation of the first nine components in expansion (2.4) 

ensures sufficient accuracy for practical applications over, a broad range of geometric 
characteristics. 

The solution of system (2.51, i.e., the evaluation of the unknowns 
x(S) PT enables the 
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desired jumps &m)fs)(~ = 1,Z)to be found on each segment rubm) (j = 0,1; m = 0,-~1,&2, . ..) for 
a load pxp (p = 1,2) by means of (2.4) and (2.2). All the required characteristics of the 
state of stress and strain of a half-plane are expressed in a known manner in terms of these 

jumps. 
Let K$$""'(i = 1, 2) d enote the normal (a = 1) and shear (8 = 2) stress intensity factors 

at points with ordinates gl (i = 1) and y, + 2 (I = 2) of the segment roam) for a load pap. 
We can write /l/ 

(2.6) 

(s= 1, 2: p=l, 2). 

The remaining intensity factors can be found from relationships analogous to (2.2). 
The approach proposed for the numerical investigation of generalized periodic problems 

for a cracked half-plane is relatively simple and effective, as is seen from the above. 

3. Scheme for the solution of non-periodic problems. We assume that the load 

P = PYN’ given on a set of segments RI,*) 0' = 0,l; m = O,+i,$-2,...) is arbitrary on segments 
between the planes n, and I&N (.V is a certain positive integer) and is symmetric (p = 1) or 
skew-symmetric (p = 2) with respect to all the planes &J,+ (r = 0, *I, 12, . .). \le let 

~2~“~’ denote their corresponding normal (s = 1) and shear (s = 2) forces on the edges of the 
crack occupying the segment l-C., ml. 

The following expansion /5/ then holds: 

where Pa,, II is the p-th of the functions po,,,, (p = 1,2) that generate functions 
1. 2) 

pL((I$“)@) (s = 

interrelated by (2.1) and defined on the fundamental segment r(O.0) by the expressions 

x-1 
pbq’,$“’ (y) = ,’ Tggpp (T,) P:“’ ‘i”l’ (y) -+ (_ 1)s.1 f; 

,,=0 ,,=I 
Te,rn(O,)P:l,“)lb’(y) (3.2) 

(s=1,2; (,=1,2; y1 y '.yl - 2) 

in the segments r(l.m) 0' = 1. 2: m = 0, &I, 22. ,) 
By virtue of the above we propose a scheme for investigating the state of stress and 

strain of the cracked half-plane taking the load 

periodic problems corresponding to the components 

should be solved. The functions p:,,“;!” needed to 
the inequalitites (3.2). Afterwards, the desired 

by the superposition principle from the fornulas 

(S = 1. 2: ,i = 0, 1: m = 0. =1.&Z. 

Letting h' tend to infinity, we arrive at the _ 

f’N1 
Pi into account. Initiallythe generalized 

P,l, I: (/ = 0. 1. . . . . .V)of the expansion (3.1) 

construct systems (2.5) are calculated from 
junps denoted by ;!~~"'!!“ (y) can be determined 

(3.3) 

. .: /l=1,2;y, <y’;y,A2) 

load pu = pu!“). which is arbitrary to the ^. right of the fI, plane and symmetric (u = 1) or skew-summetric (~1 = 8) about this olane. If 
the condition 

is satisfied for the function p,,, where a is a certain positive number, then by using 
passage to the limit as h’-t 30, expressions (3.1) and (3.2) are transformed to a form 
enabling the proposed scheme to be extended to the load pU. 

Actually, we have in place of (3.1) and (3.2) 

(3.4) 

the 



204 

13.8) 

(s= 1,2; P" 1,2; y1 < .v -; y1$ 2). 

Since I ~~~~ (T,) 1 < I and I r,, ((3,) I < 1,it follows from (3.4),(3.6) and (2.1) that 

I Phj;.rz’!:) (Y) I < ‘a (s = 1. 2: p = i. 2; i = 0, 1, . ., A’: y, < y < y, + 2) 

and therefore, Eq.(3.5) can be written in the form 

N -1 

pp=-j- lim )3 
x N-.-D; 

M,pa,.U4~ < Mia, Az=~~ . 
t=, 

Remarking in this connection that (i - 1) Aa <ai <iAa and Mi G 2 (i = i,2,...,‘%' -I)% 
we finally obtain n 

PII=+& (~=1,2) (3.7) 
0 

where in conformity with (3.6) 

~~~~o)(~)(y)=,~~~r.,,(T,)p:O n)@)(y) + (- i)r+l 5 raPp (e,)p;.“)c”)(y) *=;I 
(cl, 2:p=l,Z;y,<yYyy,+2). 

By virtue of the superposition principle the desired jumps are 

%U 
(j. m)(h) (y) =+ f x&mUr) (y) dx (3.9) 

0 
(~=1.2;~=1.2.j=0.1;m=O '1 '2....). 7-L 7._ 

For a numerical investigation of the state of stress and strain of a cracked half-plane 
corresponding to the load p,, (IL = 1,2), the integral relationship (3.9) is replaced by a finite 

combination of jumps y(j,,m'cr) .II ,, (i = O,l,....N) on the basis of a certain quadrature formula. The 
values of cj are determined uniquely by the number N and the method of summation. Afterwards, 

the corresponding genralized periodic problems are solved for which the loads p&O;" are 
calculated from (3.8). 

We note that in the most general case the load should be decomposed into symmetric and 
skew-symmetric components. If each satisfies condition (3.4), the problem under consideration 
reduces to a generalized periodic problem even this time. 

4. Internal pressure on the fundamental crack. We consider the state of stress 
and strain of a half-plane for which a uniformly distributed internal pressure of intensity 
g acts on the edges of the main crack, while the edges of the remaining cracks are force-free. 

We decompose the load into symmetric and skew-symmetric parts with respect to the no 
plane. Obviously 

Table 1 

1.5 

I? 

i 

3: 

0.5 

i 
200 

0.5 

; 
200 

0.5 
1 

2h 
0.5 

1 
3 

206 

- 

- 

- 

cm, J> = (O,Q 0.1) 

i=l 2 

138 128 
126 124 
122 121 
121 121 

129 118 
116 115 
112 111 
110 110 

123 111 
110 106 
103 103 
101 101 

ii!0 110 
IO9 105 
104 101: 
lpi) IUU 

_ 
I 2 

-23 -27 

-26 -27 1”;: 
-27 -27 

-15 -18 

-18 -19 1:: 
-20 -20 

1; 1: 

r; 1: 

- __ 
- - 
- - 
- - 

I: 
ti 01 

i 2 

1; -_2 

z”, s’, 
-3 

z; 1; 
-3 -3 
-3 -3 

1; z; 
-1 
-2 z: 

.- - 
- - 
- - 
- - 
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d* O)(l) (y) =; p;o9 O)(l) &) = q/2, pi08 O)(2) (y) = &# O)(2) (& = 0 

PW a W(‘) (y) s 0 (s = 1, 2; j = 0, I; p = 1, 2; m = i, 2, . . .) . 

It can be verified that condition (3.4) is satisfied. Therefore, the components mentioned 

are representable in the form (3.7), and their corresponding jumps &m)(a) b) can be evaluated 
by means of (3.9). 

According to (3.8) we should set 

p~&o"a' (y) = 6,16,,q/2 (s = I, 2; p = I, 2) 

in the resolving Eqs.(2.5) of the generalized periodic problems, where p =i for the symmetric, 
and p = 2 for the skew-symmetric case. 

The Simpson quadrature formula with eleven nodes was used to evaluate the integrals (3.9). 
The desired state of stress and strain is determined by the superposition of the symmetric 

and skew-symmetric states. In particular, the coefficients K~i;"""'of the normal (s=l) and 
shear (s = 2) stress intensities at the points with ordinates y, (i =I) and yr $- 2 (i = 2)of the 
segment Wm) are found as 

K;ij m, @)&r K$,;I' (') (j=O,l; m=O,$-1,&3,...) 

where K,($"" (p = 1, 2) are the corresponding intensity factors for a load pp. 

The quantities 102. Ki:i m)(1) /q are shown in Table 1 for three cracks for different values of 
the parameters a12 and y,. It is considered that e = ai4, i.e., the spacing between all the 
adjacent cracks is identical and equal to a.2. 

For a/2 = =X the half-plane under consideration is weakened only by one (main) crack and 

the values of K{~j”““(i = 1, 2) agree with the data from /6/. As yl-_' 00 the values of K@m’cl) 0) 
approach the values of the corresponding intensity factors in the problem of an isotropic 
plane weakened by a periodic system of cracks that is analogous in loading and geometry /I/. 

The approach of the cracks to the half-plane boundary results, as usual, in magnification 
of the intensity.factors. As regards the effect ofclosure of the cracks, the numerical 
analysis performed then enables a new qualitative deduction to be made. 

As is known /l/. The closure of cracks loaded by internal pressure resultsin adecreasein 
the intensity factors. Atthesame timeitturnsoutthatthepassageof unloaded cracks to a loaded 
crack causes the growth of these coefficients therecn. 

Fig.2 Fig.3 

To make the above more graphic, a nonogram for the quantities K% o)(1) ;q = K, is presented 
in Fig. 2. It contains lines of two kinds. For each line of the first kind the parameter y, 
is fixed (y, = 0.5. i.s).while the parameter ai2 varies continuously. For lines of the second 
kind, on the other hand, the value of the parameter a'2 is fixed a!2 (a’2 = 1.5,2,4. 8). For 

given values of the parameters y1 and a'2 the quantity K~“~o’~“l q is determined as the ordinate 
of the intersection of corresponding lines of the first and second kinds. The asymptotes of 
the nomogram lines are shown by dashes in Fig. 2. Their physical meaning is obvious. 

5. Other versions of crack loading by internal pressure. For any loading of 
cracks by uniform internal pressure the characteristics of the state of stress and strain of a 
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Table 2 half-plane can be obtained by a linear 

combination of the corresponding 

012 
I 

y,=Oj I 3 !#I 
characteristics by solving the problem 

elucidated in Sec. 4. 

As an illustration we select the case 
2 345 294 263 263 

; "E 
ii3 

I I 

114 i14 
when all the cracks on the right of the II, 

65 37 34 plane are loaded by internal pressure with 
identical intensity q and on the left are 
not loaded. We emphasize that this problem 
cannot be solved directly by using the method 

proposed, since condition (3.4) is not satisfied. 

Keeping the same meaning for the notation lil{;*)") that it has in Sec. 4 and understanding 

APi m)(r). to be the corresponding intensity factors in the new problem, we obtain on the basis 
0; Superposition 

$0) (1). = s;;jO' (11 _ A(1) 
(i, (3.1) 

(1=1,2). 
j=om=l 

Direct calculation of the quantities A$ is quite difficult for a number of reasons. 

Consequently, we will use a special method. The representation 

X 
j$+.o, (1) = hYO."j il 

01 0) ,‘i 
- i: , z xi;; ml (1) T in hkj -m~jl (111 

(11 
(5.2) 

j=O 'm=1 m-1 

is valid in the ordinary periodic problem corresponding to a load PaI. 

We shall consider e= a4. Then by virtue of symmetry 

X". -m-1) in _ KU' m (11 - \I8 (1, (/ = 0,l; m = 1.2. .). 

Using the notation introduced in (5.1) for A$. we obtain from (5.2) 

The coefficients Kc0 o)(" (1, were determined in Sec. 4, while the coefficients K&:"*' are found 
by solving the periodic problem. Consequently, Eq.(5.3) permits a relatively simple calculation 

of 1::; for different values of the parameters O? and gl. Certain data on the quantity -IV 

,J") 
'1) are collected in Table 2. 

The intensity factors on the fundanental crack are determined from (5.1), and on the 
other cracks by using obvious relationships. In particular 

Conditional graphs of the change in the quantities li:;,zJL'J* '4 (I= 1,2)with distance from the 

SO plane are shown in Fig. 3. Lines 1 and 2 correspond, respectively, to the values 1/1 = u.5 
and y, = 3. The parameter 02 is taken equal to 2. The asymptotes of the graphs as m - --p 
agree with the abscissa axis and as m-c4 are associated with ordinary periodic problems. 

Loads on cracks can be encountered in the most diverse combinations, hence, estimates of 
the magnitude of the maximum stress intensity factor are of considerable interest from the 
practical viewpoint. If uniformly distributed normal forces not exceeding q in absolute value 

act on the crack edges, then by elementary analysis it can be seen that an exact extimate holds: 
the stress intensity factors on any crack cannot exceed the value 

If the mentioned normal forces have the same sign on all the cracks (internal pressure), 

then the value li{$")(l) is a maximum (Fig. 2). 
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BRITTLE CLEAVAGE OF A PIECEWISE-HOMOGENEOUS ELASTIC, MEDIUM* 

I.V. SIMONOV 

Stationary pre-Rayleigh motion of a rigid body along a straight line 
connecting two elastic half-planes with the formation of a crack and a 
cavern is investigated. The contact between the edges in a small zone of 
the edge of the crack and outside the cavern at a large distance from the 
wedge is taken into account by the method of joining asymptotic expansions. 
As is shown, the ratios between the characteristic lengths are, respectively, 
quite small and quite large parameters if the wedge velocity is not close 
to the Rayleigh velocity, which specifies the advisability of using such 
an approach. 

1. An absolutely blunt rigid wedge of thickness h(r). j z 1 < imoves without friction at a 
constant velocity c along the interface y = 0, 11 j < s of two elastic media occupying the 
half-plane y> 0 (medium 1) and y< 0 (medium 2) (Fig.1). A crack of length a - 1 is formed 
ahead of the wedge and a cavity for -x,<s<-1. The crack edges and the cavity do not 

y? 

interact and are force-free (an a prioriassumption). 
The sides of the wedue are comoletelv adiacent to - _ 
to medium. Total contact conditions are satisfied 
for z>a,y=O. 

Itis requiredtodeterminethe steady stress field 

0 ’ c,mj(r, Y) and the displacement field L',j(r,y) from 

Fig.1 the following boundary conditions (y = 0): 

u.!.. = hj' (x) - g, 012" = 0, 022' ,, 0, 1 z 1 < 1 (1 .I) 

0s~’ = 0, lU,l > 0, 1 < 2 < a_z < -1, [oh21 = [U,] = 0. 

z>a 

[L‘t(l)]=h(l), s lalz]/Jji;dr=O (k,m,j=i,2) 
-1 

Here hj = h,(r) is the equation of the wedge surface relative to some of its axes, 
are Holder-continuous functions, h = h, - h,,.h (I)< a 

h, (1) 

of rotation of the wedge axis, 
-1, Ihj’(s)1<1, lzl<i,q is the angle 

the subscript j defines the mediums, square brackets denote 
the jump in a quantity on passing from medium 1 into medium 2, 
differentiation, 

the prime denotes ordinary 
and the coordinate system is moving. 

It is convenient to express the stresses and the derivatives of the displacements in 
dynamic linear elasticity theory (the plane problem, steady subsonic mode) in terms ofanalytic 

functions Xm'(zkj) of the complex variable zk. = t i @,,yby means of formulas /l/ (representations 
close to the representations in /2/). On the interface z,~ = z 

l Prikl. patem. M&an. ,49,2,275-283,1985 


